skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Elizaveta Grushnikova, Dmitri Babikov"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Study of the formation mechanism for atmospheric ozone helps to understand development of planetary atmosphere. We focus on anomalous mass-independent isotope effect. To understand the nature of isotope effect we consider all stages of ozone formation with commonly used mechanism at the low pressure regime - energy transfer (Lindemann) mechanism which involves metastable intermediate state O3*. O3* is described by scattering resonance in quantum mechanics. Particularly, scattering resonances can be calculated using of stabilization method of Clary. Stabilization approach implies that eigenvalues change as a functions of stabilization parameter (extension of the grid boundary). Based on quantum mechanical calculations of scattering resonances, kinetic rate coefficients were computed. Found resonance states were used for calculation of kinetics rate coefficients such as equilibrium and recombination coefficients for three pressure regimes (0.3, 30 and 3000 atm). Influence of pressure was estimated as well as contributions of other kinetic parameters - stabilization constant weight of each resonance, rotational, vibrational and electronic partition functions for molecule 686 O3. 
    more » « less